- decision tree classifier
- 树型判定分类法
English-Chinese computer dictionary (英汉计算机词汇大词典). 2013.
English-Chinese computer dictionary (英汉计算机词汇大词典). 2013.
Decision tree learning — This article is about decision trees in machine learning. For the use of the term in decision analysis, see Decision tree. Decision tree learning, used in statistics, data mining and machine learning, uses a decision tree as a predictive model… … Wikipedia
Alternating decision tree — An Alternating Decision Tree (ADTree) is a machine learning methodfor classification. The ADTree data structure and algorithmare a generalization of decision trees and have connections to boosting. ADTrees were introduced by Yoav Freund and Llew… … Wikipedia
Decision stump — An example of a decision stump that discriminates between two of three classes of Iris flower data set: Iris versicolor and Iris virginica. This particular stump achieves 94% accuracy on Iris dataset for these two classes. A decision stump is a… … Wikipedia
Pruning (decision trees) — Pruning is a technique in machine learning that reduces the size of decision trees by removing sections of the tree that provide little power to classify instances. The dual goal of pruning is reduced complexity of the final classifier as well as … Wikipedia
Linear classifier — In the field of machine learning, the goal of classification is to group items that have similar feature values, into groups. A linear classifier achieves this by making a classification decision based on the value of the linear combination of… … Wikipedia
Artificial intelligence — AI redirects here. For other uses, see Ai. For other uses, see Artificial intelligence (disambiguation). TOPIO, a humanoid robot, played table tennis at Tokyo International Robot Exhibition (IREX) 2009.[1] Artificial intelligence ( … Wikipedia
Random forest — In machine learning, a random forest is a classifier that consists of many decision trees and outputs the class that is the mode of the classes output by individual trees. The algorithm for inducing a random forest was developed by Leo Breiman… … Wikipedia
Supervised learning — is a machine learning technique for learning a function from training data. The training data consist of pairs of input objects (typically vectors), and desired outputs. The output of the functioncan be a continuous value (called regression), or… … Wikipedia
Support vector machine — Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Viewing input data as two sets of vectors in an n dimensional space, an SVM will construct a separating hyperplane in that… … Wikipedia
Statistical classification — See also: Pattern recognition See also: Classification test In machine learning, statistical classification is the problem of identifying the sub population to which new observations belong, where the identity of the sub population is unknown, on … Wikipedia
Glossaire du data mining — Exploration de données Articles principaux Exploration de données Fouille de données spatiales Fouille du web Fouille de flots de données Fouille de textes … Wikipédia en Français